MakeItFrom.com
Menu (ESC)

C81500 Copper vs. N10675 Nickel

C81500 copper belongs to the copper alloys classification, while N10675 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 17
47
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
85
Tensile Strength: Ultimate (UTS), MPa 350
860
Tensile Strength: Yield (Proof), MPa 280
400

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1080
1370
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
11
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 83
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 8.9
9.3
Embodied Carbon, kg CO2/kg material 2.6
16
Embodied Energy, MJ/kg 41
210
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
330
Resilience: Unit (Modulus of Resilience), kJ/m3 330
350
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 11
26
Strength to Weight: Bending, points 12
22
Thermal Diffusivity, mm2/s 91
3.1
Thermal Shock Resistance, points 12
26

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.4 to 1.5
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 97.4 to 99.6
0 to 0.2
Iron (Fe), % 0 to 0.1
1.0 to 3.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.5
0