MakeItFrom.com
Menu (ESC)

C81500 Copper vs. S20433 Stainless Steel

C81500 copper belongs to the copper alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
190
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 350
630
Tensile Strength: Yield (Proof), MPa 280
270

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 1080
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
230
Resilience: Unit (Modulus of Resilience), kJ/m3 330
180
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
23
Strength to Weight: Bending, points 12
21
Thermal Diffusivity, mm2/s 91
4.0
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.4 to 1.5
17 to 18
Copper (Cu), % 97.4 to 99.6
1.5 to 3.5
Iron (Fe), % 0 to 0.1
64.1 to 72.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0