MakeItFrom.com
Menu (ESC)

C82000 Copper vs. AWS ER90S-B9

C82000 copper belongs to the copper alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
75
Tensile Strength: Ultimate (UTS), MPa 350 to 690
690
Tensile Strength: Yield (Proof), MPa 140 to 520
470

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 970
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
25
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 60
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
2.6
Embodied Energy, MJ/kg 77
37
Embodied Water, L/kg 320
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
110
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
570
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 22
25
Strength to Weight: Bending, points 12 to 20
22
Thermal Diffusivity, mm2/s 76
6.9
Thermal Shock Resistance, points 12 to 24
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.040
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0 to 0.1
8.0 to 10.5
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0 to 0.2
Iron (Fe), % 0 to 0.1
84.4 to 90.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 0.2
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5