MakeItFrom.com
Menu (ESC)

C82000 Copper vs. EN 1.0303 Steel

C82000 copper belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
12 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 350 to 690
290 to 410
Tensile Strength: Yield (Proof), MPa 140 to 520
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 970
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 46
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
1.4
Embodied Energy, MJ/kg 77
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
110 to 270
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
10 to 15
Strength to Weight: Bending, points 12 to 20
12 to 16
Thermal Diffusivity, mm2/s 76
14
Thermal Shock Resistance, points 12 to 24
9.2 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.020 to 0.060
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
99.335 to 99.71
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0