MakeItFrom.com
Menu (ESC)

C82000 Copper vs. EN 1.4105 Stainless Steel

C82000 copper belongs to the copper alloys classification, while EN 1.4105 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is EN 1.4105 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 350 to 690
530
Tensile Strength: Yield (Proof), MPa 140 to 520
290

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 970
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.2
Embodied Energy, MJ/kg 77
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
210
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 22
19
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 76
6.7
Thermal Shock Resistance, points 12 to 24
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
16 to 18
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
77.9 to 83.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0