MakeItFrom.com
Menu (ESC)

C82000 Copper vs. EN 2.4642 Nickel

C82000 copper belongs to the copper alloys classification, while EN 2.4642 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is EN 2.4642 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 350 to 690
670
Tensile Strength: Yield (Proof), MPa 140 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
1010
Melting Completion (Liquidus), °C 1090
1360
Melting Onset (Solidus), °C 970
1320
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
50
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 5.0
8.2
Embodied Energy, MJ/kg 77
120
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
180
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
180
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
23
Strength to Weight: Bending, points 12 to 20
21
Thermal Diffusivity, mm2/s 76
3.1
Thermal Shock Resistance, points 12 to 24
18

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.5
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
27 to 31
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0 to 0.5
Iron (Fe), % 0 to 0.1
7.0 to 11
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
55.9 to 66
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0