MakeItFrom.com
Menu (ESC)

C82000 Copper vs. Grade 15 Titanium

C82000 copper belongs to the copper alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 350 to 690
540
Tensile Strength: Yield (Proof), MPa 140 to 520
430

Thermal Properties

Latent Heat of Fusion, J/g 220
420
Maximum Temperature: Mechanical, °C 220
320
Melting Completion (Liquidus), °C 1090
1660
Melting Onset (Solidus), °C 970
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 260
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 46
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.0
32
Embodied Energy, MJ/kg 77
520
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
870
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11 to 22
33
Strength to Weight: Bending, points 12 to 20
33
Thermal Diffusivity, mm2/s 76
8.4
Thermal Shock Resistance, points 12 to 24
41

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.3
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
98.2 to 99.56
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4