MakeItFrom.com
Menu (ESC)

C82000 Copper vs. Grade 33 Titanium

C82000 copper belongs to the copper alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
23
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 350 to 690
390
Tensile Strength: Yield (Proof), MPa 140 to 520
350

Thermal Properties

Latent Heat of Fusion, J/g 220
420
Maximum Temperature: Mechanical, °C 220
320
Melting Completion (Liquidus), °C 1090
1660
Melting Onset (Solidus), °C 970
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 260
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 46
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 60
55
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.0
33
Embodied Energy, MJ/kg 77
530
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
86
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
590
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11 to 22
24
Strength to Weight: Bending, points 12 to 20
26
Thermal Diffusivity, mm2/s 76
8.7
Thermal Shock Resistance, points 12 to 24
30

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0.1 to 0.2
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.3
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
98.1 to 99.52
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4