MakeItFrom.com
Menu (ESC)

C82000 Copper vs. Nickel 725

C82000 copper belongs to the copper alloys classification, while nickel 725 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 350 to 690
860
Tensile Strength: Yield (Proof), MPa 140 to 520
350

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1090
1340
Melting Onset (Solidus), °C 970
1270
Specific Heat Capacity, J/kg-K 390
440
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
75
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 5.0
13
Embodied Energy, MJ/kg 77
190
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
240
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11 to 22
28
Strength to Weight: Bending, points 12 to 20
24
Thermal Shock Resistance, points 12 to 24
23

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.35
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19 to 22.5
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
2.3 to 15.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.2
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
1.0 to 1.7
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0