MakeItFrom.com
Menu (ESC)

C82000 Copper vs. SAE-AISI 1020 Steel

C82000 copper belongs to the copper alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
17 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 350 to 690
430 to 460
Tensile Strength: Yield (Proof), MPa 140 to 520
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
11
Electrical Conductivity: Equal Weight (Specific), % IACS 46
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
1.4
Embodied Energy, MJ/kg 77
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
150 to 380
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
15 to 16
Strength to Weight: Bending, points 12 to 20
16 to 17
Thermal Diffusivity, mm2/s 76
14
Thermal Shock Resistance, points 12 to 24
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
99.08 to 99.52
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0