MakeItFrom.com
Menu (ESC)

C82000 Copper vs. C64700 Bronze

Both C82000 copper and C64700 bronze are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0 to 20
9.0
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
44
Tensile Strength: Ultimate (UTS), MPa 350 to 690
660
Tensile Strength: Yield (Proof), MPa 140 to 520
560

Thermal Properties

Latent Heat of Fusion, J/g 220
220
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 970
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
210
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
38
Electrical Conductivity: Equal Weight (Specific), % IACS 46
38

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.0
2.7
Embodied Energy, MJ/kg 77
43
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
57
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
1370
Stiffness to Weight: Axial, points 7.5
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11 to 22
21
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 76
59
Thermal Shock Resistance, points 12 to 24
24

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
95.8 to 98
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0 to 0.020
0 to 0.1
Nickel (Ni), % 0 to 0.2
1.6 to 2.2
Silicon (Si), % 0 to 0.15
0.4 to 0.8
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.5