MakeItFrom.com
Menu (ESC)

C82000 Copper vs. C87600 Bronze

Both C82000 copper and C87600 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
18
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 45
42
Tensile Strength: Ultimate (UTS), MPa 350 to 690
470
Tensile Strength: Yield (Proof), MPa 140 to 520
230

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
190
Melting Completion (Liquidus), °C 1090
970
Melting Onset (Solidus), °C 970
860
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 260
28
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 46
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 5.0
2.7
Embodied Energy, MJ/kg 77
43
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
71
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
240
Stiffness to Weight: Axial, points 7.5
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11 to 22
16
Strength to Weight: Bending, points 12 to 20
16
Thermal Diffusivity, mm2/s 76
8.1
Thermal Shock Resistance, points 12 to 24
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
88 to 92.5
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0 to 0.020
0 to 0.5
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.15
3.5 to 5.5
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
4.0 to 7.0
Residuals, % 0
0 to 0.5