MakeItFrom.com
Menu (ESC)

C82000 Copper vs. N08366 Stainless Steel

C82000 copper belongs to the copper alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 20
34
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 55 to 95
82
Shear Modulus, GPa 45
80
Tensile Strength: Ultimate (UTS), MPa 350 to 690
590
Tensile Strength: Yield (Proof), MPa 140 to 520
240

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 970
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 60
33
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 5.0
6.2
Embodied Energy, MJ/kg 77
84
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
160
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
150
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
20
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 76
3.4
Thermal Shock Resistance, points 12 to 24
13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.1
20 to 22
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
42.4 to 50.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.2
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0