MakeItFrom.com
Menu (ESC)

C82000 Copper vs. N12160 Nickel

C82000 copper belongs to the copper alloys classification, while N12160 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 20
45
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
80
Tensile Strength: Ultimate (UTS), MPa 350 to 690
710
Tensile Strength: Yield (Proof), MPa 140 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 220
360
Maximum Temperature: Mechanical, °C 220
1060
Melting Completion (Liquidus), °C 1090
1330
Melting Onset (Solidus), °C 970
1280
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
90
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 5.0
8.5
Embodied Energy, MJ/kg 77
120
Embodied Water, L/kg 320
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
260
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
180
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 22
24
Strength to Weight: Bending, points 12 to 20
22
Thermal Diffusivity, mm2/s 76
2.8
Thermal Shock Resistance, points 12 to 24
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
26 to 30
Cobalt (Co), % 2.2 to 2.7
27 to 33
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
0 to 3.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0