MakeItFrom.com
Menu (ESC)

C82000 Copper vs. S13800 Stainless Steel

C82000 copper belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 350 to 690
980 to 1730
Tensile Strength: Yield (Proof), MPa 140 to 520
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
810
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 970
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
15
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
3.4
Embodied Energy, MJ/kg 77
46
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
1090 to 5490
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 22
35 to 61
Strength to Weight: Bending, points 12 to 20
28 to 41
Thermal Diffusivity, mm2/s 76
4.3
Thermal Shock Resistance, points 12 to 24
33 to 58

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.9 to 1.4
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
12.3 to 13.2
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Iron (Fe), % 0 to 0.1
73.6 to 77.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0