MakeItFrom.com
Menu (ESC)

C82000 Copper vs. WE43B Magnesium

C82000 copper belongs to the copper alloys classification, while WE43B magnesium belongs to the magnesium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C82000 copper and the bottom bar is WE43B magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
44
Elongation at Break, % 8.0 to 20
2.2
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
17
Tensile Strength: Ultimate (UTS), MPa 350 to 690
250
Tensile Strength: Yield (Proof), MPa 140 to 520
200

Thermal Properties

Latent Heat of Fusion, J/g 220
330
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 970
550
Specific Heat Capacity, J/kg-K 390
960
Thermal Conductivity, W/m-K 260
51
Thermal Expansion, µm/m-K 17
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
11
Electrical Conductivity: Equal Weight (Specific), % IACS 46
53

Otherwise Unclassified Properties

Base Metal Price, % relative 60
34
Density, g/cm3 8.9
1.9
Embodied Carbon, kg CO2/kg material 5.0
28
Embodied Energy, MJ/kg 77
250
Embodied Water, L/kg 320
910

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
5.2
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
430
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
61
Strength to Weight: Axial, points 11 to 22
36
Strength to Weight: Bending, points 12 to 20
46
Thermal Diffusivity, mm2/s 76
28
Thermal Shock Resistance, points 12 to 24
15

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0 to 0.020
Iron (Fe), % 0 to 0.1
0 to 0.010
Lead (Pb), % 0 to 0.020
0
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
89.8 to 93.5
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0 to 0.2
0 to 0.0050
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
0
Unspecified Rare Earths, % 0
2.4 to 4.4
Yttrium (Y), % 0
3.7 to 4.3
Zinc (Zn), % 0 to 0.1
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0 to 0.5
0