MakeItFrom.com
Menu (ESC)

C82200 Copper vs. 772.0 Aluminum

C82200 copper belongs to the copper alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C82200 copper and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 8.0 to 20
6.3 to 8.4
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 390 to 660
260 to 320
Tensile Strength: Yield (Proof), MPa 210 to 520
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 220
380
Maximum Temperature: Mechanical, °C 230
180
Melting Completion (Liquidus), °C 1080
630
Melting Onset (Solidus), °C 1040
580
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 180
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
35
Electrical Conductivity: Equal Weight (Specific), % IACS 46
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 4.8
8.0
Embodied Energy, MJ/kg 74
150
Embodied Water, L/kg 310
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
350 to 430
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 12 to 20
25 to 31
Strength to Weight: Bending, points 13 to 19
31 to 36
Thermal Diffusivity, mm2/s 53
58
Thermal Shock Resistance, points 14 to 23
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Beryllium (Be), % 0.35 to 0.8
0
Chromium (Cr), % 0
0.060 to 0.2
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0 to 0.1
Iron (Fe), % 0
0 to 0.15
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 1.0 to 2.0
0
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15

Comparable Variants