MakeItFrom.com
Menu (ESC)

C82200 Copper vs. AWS ER80S-D2

C82200 copper belongs to the copper alloys classification, while AWS ER80S-D2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is AWS ER80S-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 390 to 660
620
Tensile Strength: Yield (Proof), MPa 210 to 520
540

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
47
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.6
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.6
Embodied Energy, MJ/kg 74
21
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
770
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
22
Strength to Weight: Bending, points 13 to 19
21
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 14 to 23
18

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.070 to 0.12
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0 to 0.5
Iron (Fe), % 0
95.2 to 97.4
Manganese (Mn), % 0
1.6 to 2.1
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 1.0 to 2.0
0 to 0.15
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Residuals, % 0
0 to 0.5