MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.0348 Steel

C82200 copper belongs to the copper alloys classification, while EN 1.0348 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.0348 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 390 to 660
380
Tensile Strength: Yield (Proof), MPa 210 to 520
220

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.1
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.8
1.5
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
91
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
130
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
13
Strength to Weight: Bending, points 13 to 19
15
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 14 to 23
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0 to 0.3
Iron (Fe), % 0
97.5 to 99.98
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 1.0 to 2.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Residuals, % 0 to 0.5
0