MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.1221 Steel

C82200 copper belongs to the copper alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
10 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 390 to 660
730 to 870
Tensile Strength: Yield (Proof), MPa 210 to 520
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
48
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.5
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
410 to 800
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
26 to 31
Strength to Weight: Bending, points 13 to 19
23 to 26
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 14 to 23
23 to 28

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
97.1 to 98.8
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 1.0 to 2.0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Residuals, % 0 to 0.5
0