MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.4852 Stainless Steel

C82200 copper belongs to the copper alloys classification, while EN 1.4852 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 390 to 660
490
Tensile Strength: Yield (Proof), MPa 210 to 520
250

Thermal Properties

Latent Heat of Fusion, J/g 220
330
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1080
1380
Melting Onset (Solidus), °C 1040
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 180
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
41
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.8
6.9
Embodied Energy, MJ/kg 74
100
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
19
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
160
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
17
Strength to Weight: Bending, points 13 to 19
18
Thermal Diffusivity, mm2/s 53
3.4
Thermal Shock Resistance, points 14 to 23
11

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
29.6 to 40.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.0 to 2.0
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0