MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.4872 Stainless Steel

C82200 copper belongs to the copper alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 390 to 660
950
Tensile Strength: Yield (Proof), MPa 210 to 520
560

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 230
1150
Melting Completion (Liquidus), °C 1080
1390
Melting Onset (Solidus), °C 1040
1340
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
17
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 4.8
3.3
Embodied Energy, MJ/kg 74
47
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
230
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
780
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 12 to 20
35
Strength to Weight: Bending, points 13 to 19
28
Thermal Diffusivity, mm2/s 53
3.9
Thermal Shock Resistance, points 14 to 23
21

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
54.2 to 61.6
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 1.0 to 2.0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0