MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.4922 Stainless Steel

C82200 copper belongs to the copper alloys classification, while EN 1.4922 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.4922 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
16
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 390 to 660
770
Tensile Strength: Yield (Proof), MPa 210 to 520
550

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 230
720
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 46
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
7.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
2.8
Embodied Energy, MJ/kg 74
40
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
770
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
27
Strength to Weight: Bending, points 13 to 19
24
Thermal Diffusivity, mm2/s 53
6.5
Thermal Shock Resistance, points 14 to 23
27

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 12.5
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
83.5 to 88.2
Manganese (Mn), % 0
0.3 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 1.0 to 2.0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.35
Residuals, % 0 to 0.5
0