MakeItFrom.com
Menu (ESC)

C82200 Copper vs. C72700 Copper-nickel

Both C82200 copper and C72700 copper-nickel are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0 to 20
4.0 to 36
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
44
Tensile Strength: Ultimate (UTS), MPa 390 to 660
460 to 1070
Tensile Strength: Yield (Proof), MPa 210 to 520
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 230
200
Melting Completion (Liquidus), °C 1080
1100
Melting Onset (Solidus), °C 1040
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 180
54
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
11
Electrical Conductivity: Equal Weight (Specific), % IACS 46
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
36
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 4.8
4.0
Embodied Energy, MJ/kg 74
62
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
1420 to 4770
Stiffness to Weight: Axial, points 7.4
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 12 to 20
14 to 34
Strength to Weight: Bending, points 13 to 19
15 to 26
Thermal Diffusivity, mm2/s 53
16
Thermal Shock Resistance, points 14 to 23
16 to 38

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
82.1 to 86
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 1.0 to 2.0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3