MakeItFrom.com
Menu (ESC)

C82200 Copper vs. C84000 Brass

Both C82200 copper and C84000 brass are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
27
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 390 to 660
250
Tensile Strength: Yield (Proof), MPa 210 to 520
140

Thermal Properties

Latent Heat of Fusion, J/g 220
190
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1080
1040
Melting Onset (Solidus), °C 1040
940
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 180
72
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
16
Electrical Conductivity: Equal Weight (Specific), % IACS 46
17

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 4.8
3.0
Embodied Energy, MJ/kg 74
49
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
58
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
83
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 12 to 20
8.2
Strength to Weight: Bending, points 13 to 19
10
Thermal Diffusivity, mm2/s 53
22
Thermal Shock Resistance, points 14 to 23
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Beryllium (Be), % 0.35 to 0.8
0
Boron (B), % 0
0 to 0.1
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
82 to 89
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 1.0 to 2.0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7