MakeItFrom.com
Menu (ESC)

C82200 Copper vs. C90500 Gun Metal

Both C82200 copper and C90500 gun metal are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 390 to 660
320
Tensile Strength: Yield (Proof), MPa 210 to 520
160

Thermal Properties

Latent Heat of Fusion, J/g 220
190
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1040
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 180
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
11
Electrical Conductivity: Equal Weight (Specific), % IACS 46
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
35
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 4.8
3.6
Embodied Energy, MJ/kg 74
59
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
54
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
110
Stiffness to Weight: Axial, points 7.4
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 20
10
Strength to Weight: Bending, points 13 to 19
12
Thermal Diffusivity, mm2/s 53
23
Thermal Shock Resistance, points 14 to 23
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 0.35 to 0.8
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3