MakeItFrom.com
Menu (ESC)

C82200 Copper vs. N06603 Nickel

C82200 copper belongs to the copper alloys classification, while N06603 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 390 to 660
740
Tensile Strength: Yield (Proof), MPa 210 to 520
340

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 230
1000
Melting Completion (Liquidus), °C 1080
1340
Melting Onset (Solidus), °C 1040
1300
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 180
11
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 55
50
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 4.8
8.4
Embodied Energy, MJ/kg 74
120
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
170
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
300
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
25
Strength to Weight: Bending, points 13 to 19
22
Thermal Diffusivity, mm2/s 53
2.9
Thermal Shock Resistance, points 14 to 23
20

Alloy Composition

Aluminum (Al), % 0
2.4 to 3.0
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0 to 0.5
Iron (Fe), % 0
8.0 to 11
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 1.0 to 2.0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0
0.010 to 0.1
Residuals, % 0 to 0.5
0