MakeItFrom.com
Menu (ESC)

C82200 Copper vs. N08320 Stainless Steel

C82200 copper belongs to the copper alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
40
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 60 to 96
84
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 390 to 660
580
Tensile Strength: Yield (Proof), MPa 210 to 520
220

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 180
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 4.8
4.9
Embodied Energy, MJ/kg 74
69
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
120
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
20
Strength to Weight: Bending, points 13 to 19
20
Thermal Diffusivity, mm2/s 53
3.3
Thermal Shock Resistance, points 14 to 23
13

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
40.4 to 50
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 1.0 to 2.0
25 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0