MakeItFrom.com
Menu (ESC)

C82200 Copper vs. S20433 Stainless Steel

C82200 copper belongs to the copper alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
46
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 60 to 96
82
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 390 to 660
630
Tensile Strength: Yield (Proof), MPa 210 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 230
900
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1040
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 74
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
230
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
180
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
23
Strength to Weight: Bending, points 13 to 19
21
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 14 to 23
14

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
1.5 to 3.5
Iron (Fe), % 0
64.1 to 72.4
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 1.0 to 2.0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0