MakeItFrom.com
Menu (ESC)

C82200 Copper vs. S34565 Stainless Steel

C82200 copper belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 20
39
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 60 to 96
88
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 390 to 660
900
Tensile Strength: Yield (Proof), MPa 210 to 520
470

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.8
5.3
Embodied Energy, MJ/kg 74
73
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
300
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
540
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
32
Strength to Weight: Bending, points 13 to 19
26
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 14 to 23
22

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 1.0 to 2.0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0