MakeItFrom.com
Menu (ESC)

C82200 Copper vs. S35500 Stainless Steel

C82200 copper belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 390 to 660
1330 to 1490
Tensile Strength: Yield (Proof), MPa 210 to 520
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 230
870
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
16
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
3.5
Embodied Energy, MJ/kg 74
47
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
3610 to 4100
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
47 to 53
Strength to Weight: Bending, points 13 to 19
34 to 37
Thermal Diffusivity, mm2/s 53
4.4
Thermal Shock Resistance, points 14 to 23
44 to 49

Alloy Composition

Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
73.2 to 77.7
Manganese (Mn), % 0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 1.0 to 2.0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0

Comparable Variants