MakeItFrom.com
Menu (ESC)

C82400 Copper vs. ACI-ASTM CA15M Steel

C82400 copper belongs to the copper alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
690
Tensile Strength: Yield (Proof), MPa 260 to 970
510

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 270
760
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
3.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
2.1
Embodied Energy, MJ/kg 140
29
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
130
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
670
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
25
Strength to Weight: Bending, points 16 to 26
22
Thermal Diffusivity, mm2/s 39
7.2
Thermal Shock Resistance, points 17 to 36
25

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
11.5 to 14
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
82.1 to 88.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.15 to 1.0
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0