MakeItFrom.com
Menu (ESC)

C82400 Copper vs. ACI-ASTM CG8M Steel

C82400 copper belongs to the copper alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
79
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
550
Tensile Strength: Yield (Proof), MPa 260 to 970
300

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 270
1020
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 8.9
4.1
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
210
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
220
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
19
Strength to Weight: Bending, points 16 to 26
19
Thermal Diffusivity, mm2/s 39
4.3
Thermal Shock Resistance, points 17 to 36
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 21
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
58.8 to 70
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.2
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0