MakeItFrom.com
Menu (ESC)

C82400 Copper vs. ACI-ASTM CN7M Steel

C82400 copper belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
44
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
480
Tensile Strength: Yield (Proof), MPa 260 to 970
200

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 270
1100
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 900
1450
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.8

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 8.9
5.6
Embodied Energy, MJ/kg 140
78
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
170
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
110
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
17
Strength to Weight: Bending, points 16 to 26
17
Thermal Diffusivity, mm2/s 39
5.6
Thermal Shock Resistance, points 17 to 36
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
19 to 22
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
3.0 to 4.0
Iron (Fe), % 0 to 0.2
37.4 to 48.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0