MakeItFrom.com
Menu (ESC)

C82400 Copper vs. ACI-ASTM CN7MS Steel

C82400 copper belongs to the copper alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
540
Tensile Strength: Yield (Proof), MPa 260 to 970
230

Thermal Properties

Latent Heat of Fusion, J/g 230
340
Maximum Temperature: Mechanical, °C 270
1040
Melting Completion (Liquidus), °C 1000
1400
Melting Onset (Solidus), °C 900
1350
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 8.9
5.1
Embodied Energy, MJ/kg 140
71
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
170
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
140
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
19
Strength to Weight: Bending, points 16 to 26
19
Thermal Diffusivity, mm2/s 39
3.2
Thermal Shock Resistance, points 17 to 36
13

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
18 to 20
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
1.5 to 2.0
Iron (Fe), % 0 to 0.2
45.4 to 53.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 0.2
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0