MakeItFrom.com
Menu (ESC)

C82400 Copper vs. AWS E80C-B3L

C82400 copper belongs to the copper alloys classification, while AWS E80C-B3L belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is AWS E80C-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
620
Tensile Strength: Yield (Proof), MPa 260 to 970
540

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.8

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.8
Embodied Energy, MJ/kg 140
24
Embodied Water, L/kg 310
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
760
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
22
Strength to Weight: Bending, points 16 to 26
21
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 17 to 36
18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
2.0 to 2.5
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0 to 0.35
Iron (Fe), % 0 to 0.2
93.5 to 96.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0 to 0.2
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5