MakeItFrom.com
Menu (ESC)

C82400 Copper vs. EN 1.4567 Stainless Steel

C82400 copper belongs to the copper alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
22 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
550 to 780
Tensile Strength: Yield (Proof), MPa 260 to 970
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 270
930
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
3.1
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
100 to 400
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
19 to 27
Strength to Weight: Bending, points 16 to 26
19 to 24
Thermal Diffusivity, mm2/s 39
3.0
Thermal Shock Resistance, points 17 to 36
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
17 to 19
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
3.0 to 4.0
Iron (Fe), % 0 to 0.2
63.3 to 71.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.2
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0