MakeItFrom.com
Menu (ESC)

C82400 Copper vs. EN 1.5508 Steel

C82400 copper belongs to the copper alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
11 to 20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
420 to 1460
Tensile Strength: Yield (Proof), MPa 260 to 970
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.2

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
260 to 640
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
15 to 52
Strength to Weight: Bending, points 16 to 26
16 to 36
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 17 to 36
12 to 43

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0 to 0.1
0 to 0.3
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0 to 0.25
Iron (Fe), % 0 to 0.2
97.9 to 99.199
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0