MakeItFrom.com
Menu (ESC)

C82400 Copper vs. EN 2.4669 Nickel

C82400 copper belongs to the copper alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
16
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
1110
Tensile Strength: Yield (Proof), MPa 260 to 970
720

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 270
960
Melting Completion (Liquidus), °C 1000
1380
Melting Onset (Solidus), °C 900
1330
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 8.9
10
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
160
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
1380
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 33
37
Strength to Weight: Bending, points 16 to 26
28
Thermal Diffusivity, mm2/s 39
3.1
Thermal Shock Resistance, points 17 to 36
33

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.4 to 1.0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
14 to 17
Cobalt (Co), % 0.2 to 0.65
0 to 1.0
Copper (Cu), % 96 to 98.2
0 to 0.5
Iron (Fe), % 0 to 0.2
5.0 to 9.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
2.3 to 2.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0