MakeItFrom.com
Menu (ESC)

C82400 Copper vs. EN 2.4879 Cast Nickel

C82400 copper belongs to the copper alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
3.4
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
80
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
490
Tensile Strength: Yield (Proof), MPa 260 to 970
270

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 270
1150
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 8.9
8.3
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
14
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
180
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 33
16
Strength to Weight: Bending, points 16 to 26
16
Thermal Diffusivity, mm2/s 39
2.8
Thermal Shock Resistance, points 17 to 36
13

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0 to 0.1
27 to 30
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
9.4 to 20.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0