MakeItFrom.com
Menu (ESC)

C82400 Copper vs. Grade 200 Maraging Steel

C82400 copper belongs to the copper alloys classification, while grade 200 maraging steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is grade 200 maraging steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
9.1 to 18
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 45
74
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
970 to 1500
Tensile Strength: Yield (Proof), MPa 260 to 970
690 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 8.9
4.5
Embodied Energy, MJ/kg 140
59
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
1240 to 5740
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 33
33 to 51
Strength to Weight: Bending, points 16 to 26
27 to 35
Thermal Shock Resistance, points 17 to 36
29 to 45

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.050 to 0.15
Beryllium (Be), % 1.6 to 1.9
0
Boron (B), % 0
0 to 0.0030
Calcium (Ca), % 0
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
8.0 to 9.0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
67.8 to 71.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.2
17 to 19
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.15 to 0.25
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.5
0