MakeItFrom.com
Menu (ESC)

C82400 Copper vs. Nickel 30

C82400 copper belongs to the copper alloys classification, while nickel 30 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
82
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
660
Tensile Strength: Yield (Proof), MPa 260 to 970
270

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 270
1020
Melting Completion (Liquidus), °C 1000
1480
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.6

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 8.9
9.4
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
180
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
180
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 33
22
Strength to Weight: Bending, points 16 to 26
20
Thermal Diffusivity, mm2/s 39
2.7
Thermal Shock Resistance, points 17 to 36
18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
28 to 31.5
Cobalt (Co), % 0.2 to 0.65
0 to 5.0
Copper (Cu), % 96 to 98.2
1.0 to 2.4
Iron (Fe), % 0 to 0.2
13 to 17
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.2
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0