MakeItFrom.com
Menu (ESC)

C82400 Copper vs. SAE-AISI 1141 Steel

C82400 copper belongs to the copper alloys classification, while SAE-AISI 1141 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is SAE-AISI 1141 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
11 to 17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
72
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
740 to 810
Tensile Strength: Yield (Proof), MPa 260 to 970
400 to 700

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
10
Electrical Conductivity: Equal Weight (Specific), % IACS 26
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
86 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
430 to 1290
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
26 to 29
Strength to Weight: Bending, points 16 to 26
23 to 25
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 17 to 36
24 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.37 to 0.45
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
97.7 to 98.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
1.4 to 1.7
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0