MakeItFrom.com
Menu (ESC)

C82400 Copper vs. SAE-AISI 52100 Steel

C82400 copper belongs to the copper alloys classification, while SAE-AISI 52100 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
10 to 20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
72
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
590 to 2010
Tensile Strength: Yield (Proof), MPa 260 to 970
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
430
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
47
Thermal Expansion, µm/m-K 17
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 310
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
350 to 840
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
21 to 72
Strength to Weight: Bending, points 16 to 26
20 to 45
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 17 to 36
19 to 61

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.1
1.4 to 1.6
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
96.5 to 97.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.25 to 0.45
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0