MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C15900 Copper

Both C82400 copper and C15900 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C15900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
6.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
720
Tensile Strength: Yield (Proof), MPa 260 to 970
240

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 900
1030
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 130
280
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
48
Electrical Conductivity: Equal Weight (Specific), % IACS 26
49

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 8.9
2.8
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
37
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
260
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
23
Strength to Weight: Bending, points 16 to 26
20
Thermal Diffusivity, mm2/s 39
80
Thermal Shock Resistance, points 17 to 36
26

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.76 to 0.84
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.27 to 0.33
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
97.5 to 97.9
Iron (Fe), % 0 to 0.2
0 to 0.040
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0
Oxygen (O), % 0
0.4 to 0.54
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.66 to 0.74
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0