MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C18400 Copper

Both C82400 copper and C18400 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.0 to 20
13 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
44
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
270 to 490
Tensile Strength: Yield (Proof), MPa 260 to 970
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 900
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 130
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
80
Electrical Conductivity: Equal Weight (Specific), % IACS 26
81

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 8.9
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
54 to 980
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
8.5 to 15
Strength to Weight: Bending, points 16 to 26
10 to 16
Thermal Diffusivity, mm2/s 39
94
Thermal Shock Resistance, points 17 to 36
9.6 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Arsenic (As), % 0
0 to 0.0050
Beryllium (Be), % 1.6 to 1.9
0
Calcium (Ca), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.1
0.4 to 1.2
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
97.2 to 99.6
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 0 to 0.020
0
Lithium (Li), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.7
Residuals, % 0
0 to 0.5