MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C19010 Copper

Both C82400 copper and C19010 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C19010 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.0 to 20
2.4 to 22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
330 to 640
Tensile Strength: Yield (Proof), MPa 260 to 970
260 to 620

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
200
Melting Completion (Liquidus), °C 1000
1060
Melting Onset (Solidus), °C 900
1010
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
48 to 63
Electrical Conductivity: Equal Weight (Specific), % IACS 26
48 to 63

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 8.9
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
7.3 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
290 to 1680
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
10 to 20
Strength to Weight: Bending, points 16 to 26
12 to 18
Thermal Diffusivity, mm2/s 39
75
Thermal Shock Resistance, points 17 to 36
12 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
97.3 to 99.04
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0.8 to 1.8
Phosphorus (P), % 0
0.010 to 0.050
Silicon (Si), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5