MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C89320 Bronze

Both C82400 copper and C89320 bronze are copper alloys. They have 90% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
270
Tensile Strength: Yield (Proof), MPa 260 to 970
140

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 270
180
Melting Completion (Liquidus), °C 1000
1050
Melting Onset (Solidus), °C 900
930
Specific Heat Capacity, J/kg-K 380
360
Thermal Conductivity, W/m-K 130
56
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
15
Electrical Conductivity: Equal Weight (Specific), % IACS 26
15

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 8.9
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 310
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
38
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
93
Stiffness to Weight: Axial, points 7.6
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
8.5
Strength to Weight: Bending, points 16 to 26
10
Thermal Diffusivity, mm2/s 39
17
Thermal Shock Resistance, points 17 to 36
10

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Beryllium (Be), % 1.6 to 1.9
0
Bismuth (Bi), % 0
4.0 to 6.0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
87 to 91
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0 to 0.020
0 to 0.090
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.1
5.0 to 7.0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5