MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C92500 Bronze

Both C82400 copper and C92500 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
310
Tensile Strength: Yield (Proof), MPa 260 to 970
190

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 270
170
Melting Completion (Liquidus), °C 1000
980
Melting Onset (Solidus), °C 900
870
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 130
63
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
12
Electrical Conductivity: Equal Weight (Specific), % IACS 26
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 8.9
3.7
Embodied Energy, MJ/kg 140
61
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
30
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
170
Stiffness to Weight: Axial, points 7.6
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
9.8
Strength to Weight: Bending, points 16 to 26
12
Thermal Diffusivity, mm2/s 39
20
Thermal Shock Resistance, points 17 to 36
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
85 to 88
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0 to 0.020
1.0 to 1.5
Nickel (Ni), % 0 to 0.2
0.8 to 1.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
10 to 12
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.7