MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C96900 Copper-nickel

Both C82400 copper and C96900 copper-nickel are copper alloys. They have 76% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.0 to 20
4.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
45
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
850
Tensile Strength: Yield (Proof), MPa 260 to 970
830

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
210
Melting Completion (Liquidus), °C 1000
1060
Melting Onset (Solidus), °C 900
960
Specific Heat Capacity, J/kg-K 380
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
9.2

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 8.9
4.6
Embodied Energy, MJ/kg 140
72
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
38
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
2820
Stiffness to Weight: Axial, points 7.6
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 16 to 33
27
Strength to Weight: Bending, points 16 to 26
23
Thermal Shock Resistance, points 17 to 36
30

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
73.6 to 78
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0 to 0.020
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.2
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 0 to 0.1
7.5 to 8.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.5